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Abstract 

A broad range of questions at various instances in the legal process can be 

stated and analysed in terms of formal decision theoretic models, with 

results conveyed in graphical terms, such as decision trees. However, the 

real-world decision problems encountered by the participants of a legal 

process, including judges, prosecutors and attorneys, present challenging 

features, such as multiple competing propositions, variable costs and 

uncertain process outcomes. This complicates decision theoretic 

computations and the use of diagrammatic devices such as decision trees 

which mainly provide static views of selected features of a given problem. 

Yet, the issues are inherently dynamic, and the complexity of strategic 

planning and assessing legal tactics – given a party’s standpoint – increases 

even further when considerations are extended to information provided by 

forensic science services. This is because introducing results of forensic 

examinations may impact on the probability of various trial outcomes and 

hence crucially impact on a party’s interests. In this paper, we analyse and 

discuss examples of decision problems at the interface of the law and 

forensic science using influence diagrams (i.e., Bayesian decision 
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networks). Such models, hereafter called normative decision support 

structures, can be operationally implemented through commercially and 

academically available software systems. These normative decision 

support structures represent core computational models that can be 

integrated as part of decision and litigation support systems, to help the 

participants of a legal process answer a variety of questions regarding 

complex strategic decisions.    
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1 Introduction 

In light of the ever-increasing intricacy of legal practices, sound methodology to 

support thinking and making decisions in practical cases is a topic of interest for 

both researchers and practitioners. The central aspects of a given civil or criminal 

case, in particular those over which disagreement exists, need to be thought 

about in a structured way to enable insight and improve communication between 

various participants in the legal process. This includes lawyer and client 

relationships as well as the relationship between adversarial parties at trial. 

Methodologies for analysing legal cases, and their implementation, are pivotal 

topics for both practitioners and academics, because of the need to cope 

coherently with the problem of decision-making under uncertainty. For example, 

a party may need to decide whether to settle or plead guilty, whether to go to 

trial or how to allocate resources (e.g., to the search of further information). Such 

decisions place a party’s wealth, welfare or personal liberty at stake, and 

attorneys must thus formulate legal tactics that appropriately reflect the party’s 

preferences for or aversion to process outcomes. In litigation law, for example, 

factors such as the costs of going to trial, and the uncertainties about possible 

outcomes (verdicts) all need to be dealt with in a coherent whole. Such questions 

involve all the ingredients of classic decision theory: feasible decisions, uncertain 

states of nature, consequences (i.e., combinations of decisions and states of 

nature) and a valuation of the desirability (or, worth) of consequences. 1 Decision 

theory is strongly rooted in economics2 and, following developments by several 

leading business school groups in the middle of the last century, it has also 

                                                 

1  E.g., Howard Raiffa, Decision Analysis, Introductory Lectures on Choices under Uncertainty 

(Reading, Mass.: Addison-Wesley, 1968); Howard Raiffa and Robert Schlaifer, Applied 

Statistical Decision Theory (Cambridge, Mass.: MIT Press, 1961). 
2  John von Neumann and Oskar Morgenstern, Theory of Games and Economic Behavior, 3rd ed. 

(Princeton: Princeton University Press, 1953). 
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stimulated interest in the legal arena.3 This interest has steadily increased and has 

been further strengthened, mainly since the 1980s, by the development of widely 

available computer systems capable of processing the mathematical form of legal 

decision models.4 Such systems are not intended to replace various decision-

makers in the legal process nor do such concepts claim to offer a comprehensive 

descriptive account of the various aspects of the legal process that they seek to 

model. Instead, such systems should best be considered as decision support 

devices to assist in the analysis of selected aspects of the densely connected 

network of factors upon which the outcomes of a case depend, at the level of 

detail that the user considers appropriate. Thus, they offer a normative 

perspective in the sense further discussed below. 

The prototypical questions that have attracted wide interest among 

decision-theoretic researchers and legal scholars relate to the conviction or 

acquittal of defendants in the criminal trial, and the determination of the liability 

of defendants in civil lawsuits. These are important but far end points of legal 

processes. Decision theory, however, is a general theory for analysing how an 

individual, facing the question of what decision to make in situations of 

uncertainty, should proceed so as to insure coherence with that person’s 

judgments and preferences among possible decision outcomes.5 In this paper, we 

build on existing works on decision theory for strategic questions arising in the 

legal context and then develop two extensions. The first is a translation of the 

                                                 

3  Alan Cullison, “Probability Analysis of Judicial Fact-Finding: A Preliminary Outline of the 

Subjective Approach” (1969) 1 University of Toledo Law Review pp. 538-698; John Kaplan, 

“Decision Theory and the Factfinding Process” (1968) 20(6) Stanford Law Review 1065-1092. 
4  Stuart Nagel, Microcomputers as Decision Aids in Law Practice (New York: Quorum Books, 1987); 

Stuart Nagel, Decision-Aiding Software and Legal Decision-Making: A Guide to Skills and 

Applications Throughout the Law (New York: Quorum Books, 1989). 
5  Ronald Howard, “Decision Analysis and Law” in Marilyn Mac Crimmon and Peter Tillers 

(eds.), The Dynamics of Judicial Proof. Computation, Logic, and Common Sense (New York: 

Springer, 2002), pp. 261-269. 
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standard model of legal negotiations, commonly represented in terms of decision 

trees,6 into Bayesian decision networks, also sometimes called influence 

diagrams.7 Bayesian decision networks are a highly flexible modelling 

environment that can be implemented using academically and commercially 

available software systems. The second extension concerns results of forensic 

examinations that may have an impact on trial outcomes, or intermediate steps 

in the legal process. To operate this second extension, we will take advantage of 

the fact that the use of graphical models, such as Bayesian networks and Bayesian 

decision networks, is already a well-established area of research for analysing the 

probative strength of forensic science results.8 Thus, the question of how to 

logically connect reasoning models for legal negotiations and forensic results is 

an area which offers much room for fundamental research.  

By choosing decision-theoretic graphical models we emphasise that the 

analyses pursued in this paper are normative,9 i.e. focusing on explicit reference 

points against which one can compare one’s reasoning and conclusions in 

practical situations that require a decision to be made.10 Stated otherwise, we will 

not deal with the empirical question of whether people’s actual behaviour 

conforms to the normative account of decision-making. There is, in fact, 

substantial evidence that people’s intuitive and unaided reasoning generally 

diverges from normative standards.11 While descriptive research is important to 

                                                 

6  E.g., Howard Raiffa, The Art and Science of Negotiation, How to Resolve Conflicts and Get the Best 

out of Bargaining (Cambridge, Mass.: Belknap Press of Harvard University Press, 1982). 
7  Uffe Kjærulff and Anders Madsen, Bayesian Networks and Influence Diagrams, A Guide to 

Construction and Analysis (New York: Springer, 2008). 
8  Franco Taroni et al., Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic 

Science, 2nd ed., (Chichester: John Wiley & Sons, 2014). 
9  Dennis Lindley, Making Decisions, 2nd ed. (Chichester: John Wiley & Sons, 1985). 
10  Johnathan Baron, Thinking and Deciding (New York: Cambridge University Press, 2008, 4th 

ed.). 
11  E.g., Terry Connolly, “Decision Theory, Reasonable Doubt, and the Utility of Erroneous 

Acquittals” (1987) 11(2) Law and Human Behaviour 101-112; Gregory Jones and Douglas Yarn, 
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assess the extent to which people think and act coherently, we maintain that this 

can only be achieved if the normative standpoints are first clarified (against 

which observable behaviour can be compared), and this is what the normative 

decision-theoretic structures developed throughout this paper seek to achieve. 

We will call our models computational normative decision support structures 

because our analyses, using formal approaches, focus on the conceptual 

relationship between traditional interpretation of forensic science results and 

strategic analysis in legal proceedings.  

The paper is organized as follows. Section 2 briefly introduces the 

graphical models for decision-theoretic analyses used in later parts of the paper, 

i.e. decision trees and Bayesian decision networks (influence diagrams), using a 

general example of plea bargaining from the defendant’s point of view. Readers 

well acquainted with these concepts may skip this section. Section 3 starts with 

an outline of how to state the general model of legal negotiations in terms of a 

Bayesian decision network. Extensions regarding litigation costs, uncertainty 

factors affecting these costs and other elements characterising the decision 

problem are added gradually, with all decision-theoretic computations outlined. 

It will be shown that Bayesian decision networks allow one to deal with formal 

decision-theoretic calculations and incorporate notions such as perfect and 

partial information. Section 3 will also outline the model structures to deal with 

the results of forensic examinations and the connection of these models with the 

standard models for decision analysis in the legal context, using the notions of 

sequential decision analysis and normative decision policies. Discussion and 

conclusions will be presented in Section 4.  

                                                 

“Evaluative Dispute Resolution Under Uncertainty: An Empirical Look at Bayes’ Theorem 

and the Expected Value of Perfect Information” (2003) 2 Journal of Dispute Resolution 427-461; 

Daniel Kahneman, Thinking, Fast and Slow (London: Penguin, 2011). 
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2 Methods and notation 

2.1 Decision trees 

Decision trees are a general method to capture and convey the basic components 

of a decision problem. For the purpose of illustration, imagine a defendant 

(assisted by an attorney) who must decide between two actions. Denote them 𝑑1, 

accepting a plea of guilty on a reduced charge, and 𝑑2, letting the case go to trial. 

Other decision cases will be studied in the main part of the paper (Section 3). 

When making a decision, there may be uncertainty about the state of nature, 

current or future. In the situation faced by the defendant, there may be 

uncertainty about the trial outcome if he decides 𝑑2, i.e. going to court instead of 

accepting a plea agreement (𝑑1). Let the two future legal conclusions (verdicts), 

about which the defendant is uncertain at the time of deciding between 𝑑1 and 

𝑑2, be denoted 𝜃1, for “guilty”, and  𝜃2, for “not guilty”. Note that here the focus 

is on uncertainty about the legal conclusion that will be reached when applying 

the law to the facts of the case. Such uncertainty cannot be eliminated, but it can 

be measured by means of probabilities.12 We are not concerned here with the 

various events that may have happened and that will form the basis for reaching 

a conclusion at trial. This relates to another decision process by another decision-

                                                 

12  In the context of evaluating the impact of evidence, the proposition “the defendant committed 

the crime” is sometimes referred to, colloquially, as the “guilt hypothesis”. This has been 

criticised as confusing (e.g., Ronald Allen, “Rationality, Algorithms and Juridical Proof: a 

Preliminary Inquiry” (1997) 1 The International Journal of Evidence & Proof 254-275; Stephen 

Fienberg, “Theories of Legal Evidence: What Properties Should They Ideally Possess and 

when are they Informative?” (1997) 1 The International Journal of Evidence & Proof 309-312) 

because, strictly speaking, guilt is not a hypothesis, but a decision reached based on the 

consideration of the proposition according to which the defendant is the offender. We agree 

with this view. In our decision analysis pursued here, a court’s decision is considered an 

uncertain state of nature for which a participant in the legal process (e.g., the defendant) may 

assign probabilities. Hence, we are not modelling the trial decision, but the decision of what 

to do from the point of view of a participant (party) in the legal process.  
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maker (e.g., the court), which is different from the viewpoint of the defendant 

studied here.  

Deciding 𝑑𝑖 in light of a state of nature 𝜃𝑗  leads to a consequence 𝐶𝑖𝑗. Thus, 

in the hypothetical case considered here, 𝐶21 is the consequence of taking the case 

to trial (𝑑2) with the outcome that the accused is found guilty at the end of the 

trial (𝜃1), whereas 𝐶22 is the consequence of taking the case to trial (𝑑2) with the 

outcome that the accused is found not guilty at the end of the trial (𝜃2). Note that 

when taking 𝑑1, accepting the plea on a reduce charge, there is only a single 

consequence, 𝐶1∙, that is the reduced charge as defined in advance. In particular, 

since there will be no trial, there is no uncertainty about legal conclusions 𝜃1 and 

𝜃2 that needs to be taken into account. The consequences 𝐶𝑖𝑗 in this example are 

characterised in terms of years of imprisonment, denoted hereafter by PT(𝐶𝑖𝑗), 

i.e. the prison time PT associated with consequence 𝐶𝑖𝑗. We acknowledge, 

however, that this represents a simplified view, in the sense that there may be 

further aspects that characterise a decision consequence. For example, if found 

guilty, the defendant may lose his job, he may be disenfranchised etc. More 

generally, to each consequence 𝐶𝑖𝑗 is associated a utility, denoted U(𝐶𝑖𝑗), or a loss, 

denoted Lo(𝐶𝑖𝑗), quantifying or expressing the desirability or undesirability of 

the incurred outcomes, respectively. In the case at hand, the loss is assumed to 

be linear over the total range of years that can possibly result from a conviction. 

Hence, it can be set numerically equal to the years of imprisonment, that is 

Lo(𝐶𝑖𝑗) = PT(𝐶𝑖𝑗). Note, however, that losses can also be quantified differently. 

For example, the undesirability of a conviction can be measured in monetary 

terms. An example where the desirability of decision consequences is quantified 

in monetary terms is developed in Section 3.  
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Figure 1: Decision tree for a defendant’s decision problem. The square represents the 

available decisions 𝑑𝑖, i = {1, 2}. The circle represents the states of nature  𝜃𝑗 , j = {1, 2}, 

which determine the outcomes  𝐶2𝑗 if decision 𝑑2 is taken. Pr(𝜃𝑗|𝐼) represents the 

probability of state of nature 𝜃𝑗 given information I. All consequences 𝐶 are valued in 

terms of years of imprisonment. Decisions are compared on the basis of the expected 

prison time, EPT. The decision branch which does not offer the smallest EPT, here 𝑑1, 

is double crossed //.  

 

In decision trees, the above decision-theoretic elements are captured as 

shown in Figure 1. The actions available to the defendant, 𝑑1 and 𝑑2, are 

described by the two branches that emanate from the trunk, shown as a square – 

the decision node – on the far left-hand side. The circled node, also called chance 

node, represents states of nature about which the decision-maker is uncertain. 

There is a time order when going from left to right, because when deciding 𝑑2, 

two things can happen. Either, the fact-finder will find the defendant guilty, 𝜃1, 

an event thought to occur with probability 0.7, or 𝜃2, the event of finding the 

defendant not guilty, an event thought to occur with probability 0.3. At the far 

right-hand side, the terminal states 𝐶 are shown, along with their associated 

evaluation of undesirability (in the case here losses in terms of years of 

imprisonment). The chance node is labelled with the expected prison term, EPT, 

of the decision 𝑑2 whereas the squared decision node is labelled with the 

d1: accept plea

d2: go to trial

q1: guilty

q2: not guilty

C1・ : 3 years

C21: 6 years

C22: 0 years

Pr(q1 | I)=0.7

Pr(q2 | I)=0.3

EPT(d2)
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time
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consequences 
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expected prison term of the optimal decision 𝑑𝑜𝑝𝑡. In the analysis here, it is 

considered that the optimal decision is the one which has the smallest EPT. For 

the case studied here, the EPT associated with the decision to go to trial (𝑑2), is 

4.2, and is obtained by summing over the possible states of nature the product of 

the loss associated to each consequence 𝐶𝑖𝑗 (i.e., the prison time PT(𝐶𝑖𝑗)) and the 

probability of the state of nature, that is:  

 

EPT(𝑑2) = PT(𝐶𝑖𝑗) Pr(𝜃1|𝐼) + PT(𝐶22) Pr(𝜃2|𝐼) = 6 × 0.7 + 0 × 0.3 = 4.2. 

 

The branch 𝑑1 has a smaller EPT, 3 years, which corresponds to the loss 

associated to the consequence 𝐶1∙, the reduced charge. In summary, thus 

EPT(𝑑1) < EPT(𝑑2) and it follows that the optimal decision is 𝑑𝑜𝑝𝑡 = 𝑑1.13 This is 

in agreement with the assumption that the defence pursues the hypothetical 

objective of minimizing the expected length of time the defendant will be 

deprived of liberty. To some extent this helps illustrate why many defendants 

accept guilty pleas even though they may assign only a moderate or low 

                                                 

13  The elicitation of probabilities for states of nature is often considered a tedious task, since 

decision-makers are asked to translate into numbers their personal beliefs, sometimes with an 

unrealistic level of precision. However, the decision-maker can perform a sensitivity analysis 

to provide a threshold for the required probability Pr(𝜃1|𝐼) with which the optimal decision 

will change. In the current example, one may easily observe that the limiting value for Pr(𝜃1|𝐼) 

is equal to 0.5: as long as the event that the court will find the defendant guilty is considered 

to be more probable than the event that the court will render a verdict of not guilty, the optimal 

decision is 𝑑1. The assignment of losses is another intricate task. Clearly, one may observe that 

the consequence of a conviction, resulting in prison, may not be linear over the total range of 

years of imprisonment, with a decreasing aversion to prison time. It is possible to build a loss 

function in the range (0, 1), with a zero loss associated with an acquittal, and a maximum loss 

equal to 1 in the case of, for example, life imprisonment, with highly increasing losses over the 

first years, followed by a linear growth. This may obviously have an impact on the optimal 

decision, though this does not adversely affect the proposed approach as such. The fact that 

an optimal decision may vary depending on one’s assumptions and preferences does not 

imply that the implemented decisional approach is unsuitable. A decision, in the approach 

pursued here, is not optimal in absolute terms; it is optimal with respect to the decision-

maker’s preferences and uncertainties about outcomes at stake.  
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probability of being convicted if the case went to trial: because the sentence in 

case of a conviction may be very severe (or perceived as such), even a low 

probability for a conviction will be sufficient to ‘outweigh’ the sentence 

associated with the guilty plea. While this is a purely formal view, we concede 

that in practice defendants may prefer a guilty plea for other reasons, too.  

Let us emphasise again that evaluating the undesirability of decision 

consequences directly in terms of prison time was a choice made for the sole 

purpose of providing an example, and that other loss functions associating a 

higher severity to adverse outcomes can be built. This may lead to losses 

expressing nearly infinitely undesirable consequences that would make going to 

trial unadvisable even in presence of a very low probability of an unfavourable 

verdict.14 Moreover, going to trial may be perceived as a highly aleatory 

undertaking, with sentence length and probabilities for verdicts being difficult to 

assess, thus making the guilty plea with its sure consequence the preferable 

option. Specifically, if the defendant refuses to quantify uncertainty (about states 

of nature; here verdicts), or refuses to run the risk of incurring the worst 

consequence associated with going to trial (especially if 𝐶21 represents a severe 

sentence), and hence accept the guilty plea (𝑑1), such a strategy would amount to 

minimising the maximum loss. This is a non-probabilistic decision criterion also 

known in literature as minimax.15 It is important to note that such an alternative 

consideration is not in conflict with the general decision theoretic approach 

                                                 

14  The reason for using the term “nearly infinitely undesirable consequences” is that the 

axiomatic foundation for the existence of a utility function we refer to requires that there do 

not exist infinitely undesirable consequences. Otherwise, no matter how small the probability 

of a conviction is, one will always prefer to avoid going to trial.  
15  E.g., Herman Chernoff and Lincoln Moses, Elementary Decision Theory (New York: John Wiley 

& Sons, 1959). 
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considered here: the basic decomposition of the decision problem outlined at the 

beginning of this section, summarised graphically in Figure 1, remains the same.  

The point of view of the prosecution may be different in that they may 

seek to maximise the expected prison time, and hence the expected length of time 

the offender is kept away from society. But again, we emphasise that there may 

be other – concurrent – objectives in prosecution decision-making, beyond the 

scope of the generic introductory example chosen here. Our current 

demonstration only focuses on a single objective and how this single objective is 

conceptualised. The reader may use other values for probabilities and losses (e.g., 

different sentence lengths) as required, but should be aware of the fact that this 

may impact on the EPT of the two decisions, and hence 𝑑𝑜𝑝𝑡. For example, for 

any plea of guilty on a reduced charge greater than 4.2 years, while keeping the 

other assignments as defined above, the optimal decision is 𝑑𝑜𝑝𝑡 = 𝑑2.  

2.2 Bayesian decision networks (influence diagrams) 

While decision trees (Section 2.1) provide a static summary of the main features 

of a decision analysis, such as probabilities and (expected) utilities, Bayesian 

decision networks (BDNs) provide a more flexible and dynamic, but also more 

compact modelling framework. BDNs extend Bayesian networks by including 

rectangle nodes for representing decision variables and diamonds for 

representing utility functions.16 To illustrate the main components of BDNs, 

consider again the defendant’s decision problem introduced in Section 2.1. 

Figure 2 represents the main aspects of this case in terms of a BDN. Rather than 

presenting a full and simultaneous display of all “routes” that may follow from 

a decision (as shown in Figure 1), variables in a BDN are represented by single 

                                                 

16  Kjærulff and Madsen, supra n. 7. 
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nodes. For example, instead of having a branch for each decision 𝑑𝑖 in a decision 

tree, a BDN concentrates all decisions in a single node (here node D). The 

expanded node D in Figure 2(ii) summarises the EPT associated with each 

decision 𝑑𝑖. These EPT values correspond to the values attached to the branches 

𝑑𝑖  of the decision tree (Figure 1). Note that the BDN in Figure 2 is the simplest 

possible model structure as it involves exactly one node for each node category, 

i.e. nodes for states of nature (also called chance nodes), decisions and utilities. 

More elaborate models will be introduced in later sections. Note that the links 

pointing from nodes D and 𝜃 to PT mean that the “goodness” of a decision, here 

decision 𝑑2, is dependent on the future state of nature 𝜃 (i.e., the trial outcome). 

In particular, the node PT contains a table that specifies a prison term (in years) 

for each combination of a decision 𝑑𝑖  and a trial outcome 𝜃𝑗 , for i,j = {1,2}.  

Bayesian decision networks are fairly flexible, as is illustrated by Figure 2 

(iii), which shows an alternative network structure. In this model, the states of 

nature 𝜃𝑗  depend on the decisions 𝑑𝑖. In particular, there is an additional state of 

nature 𝜃3, ‘no trial’, that is the situation in which 𝑑1 (accept plea agreement) is 

chosen. The structural relationship 𝐷 → 𝜃 thus allows us to specify probabilities 

that depend on propositions, Pr(𝜃𝑗|𝑑𝑖). So, for the case in which the defendant 

accepts the plea (𝑑1), the conditional probabilities for the states of nature θj are 

Pr(𝜃𝑗|𝑑1) = {0,0,1}, where 𝜃1=guilty, 𝜃2=not guilty and 𝜃3=no trial. And, clearly, 

if the decision is to prosecute (𝑑2), the probabilities are Pr(𝜃𝑗|𝑑2) = {0.7,0.3,0}, for 

j = {1, 2, 3}. The utility node17 PT contains the values (prison terms) 6 if 𝜃1 (guilty) 

holds, 0 if 𝜃2 (not guilty) holds and 3 if 𝜃3 (no trial) holds. Note that the latter 

                                                 

17  Note that the “utility” in this case represents, in fact, a loss. However, this has no impact on 

the optimisation strategy and the resulting decisional choice: the criterion of maximising 

expected utility will become the criterion of minimising expected prison time (i.e., loss).  
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assignment, PT(𝐶1∙) = 3, corresponds to the reduced charge associated with the 

accepted plea.  

 

 

Figure 2: Bayesian decision networks for the defendant’s decision problem introduced 

in Section 2.1. The node 𝜃 represents the uncertain states of nature (i.e., trial outcomes), 

the diamond shaped node PT the evaluation of the consequences (quantified in terms 

of prison term), and the squared node D the available actions. Figure (i) shows the 

general network structure whereas Figure (ii) shows the nodes D and 𝜃 in full detail 

for a situation in which the defendant expects a guilty verdict at the end of the process 

to occur with probability 0.7 and a not guilty verdict with probability 0.3. Node D 

shows the expected prison term (EPT) for the two decisions 𝑑2 and 𝑑2. Figure (iii) 

shows an alternative network structure leading to the same EPT, the sole difference 

being the introduction of an additional state of nature 𝜃3 to account for the situation 

of no trial being held when decision 𝑑1 is taken.   

3 Normative decision structures 

3.1 Standard model of legal negotiations 

Consider now a standard model of legal negotiations through the case of a 

hypothetical damage suit in the amount of €150,000. The plaintiff faces the 

decision of whether to accept an out-of-court settlement (decision 𝑑1), or to bring 

the lawsuit to trial (decision 𝑑2). The plaintiff can either win the case (𝜃1), or lose 

the case (𝜃2). Suppose that the plaintiff’s current assessment of his probability of 

D q

PT

d1: accept plea 3

d2: prosecute 4.2

PT

q1: guilty 0.7

q2: not guilty 0.3

(i) (ii)

d1: accept plea 3

d2: prosecute 4.2

PT

q1: guilty 0.3

q2: not guilty 0.15

q3: no trial 0.5

(iii)
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winning the case is 0.8.18 Using notation introduced above, we can write this as 

Pr(𝜃1|𝐼) = 0.8, where I denotes the plaintiff’s current state of information. By 

coherence, the probability of losing the case is Pr(𝜃2|𝐼) = 0.2, again considered 

from the plaintiff’s point of view. Note that in this case the probabilities of states 

of nature are not conditioned on decisions. For the time being, we will leave aside 

considerations of litigation costs; we will introduce these step by step later on. 

The purpose at this point is to draw the attention solely to the notion of the 

expected value of going to trial, to embody the essence of the problem. In the case 

here, we suppose that the consequence of a decision is entirely described in 

monetary terms (monetary value, MV), and that the utility function is linear so 

that the utility can be set to be numerically equal to the monetary value, that is 

U(MV(𝑑𝑖, 𝜃𝑗)) = MV(𝑑𝑖, 𝜃𝑗). Moreover, we suppose that the decision-maker is 

willing to act on the basis of expected monetary value (EMV), or at least is 

interested in this value prior to making a decision based on considerations going 

beyond those explicitly taken into account at this juncture. As in the previous 

sections, we emphasise that action based on EMV is an assumption subject to 

discussion, though it does not impact on the principle of the proposed analyses. 

It is perfectly feasible, for example, to choose another utility function to account 

for individual preferences according to which changes in the utility of very low 

or very high monetary values are not linear.  

                                                 

18  How to arrive at such probability assignments is an intricate topic in its own right and goes 

beyond the scope of this paper. Devices that can help with probability assignment are covered 

largely in specialised literature on the topic, ranging from practical approaches (e.g., 

consultation with peers, past experience in similar cases, etc.) to technical procedures based 

on chance devices (e.g., probability wheels) adapted from fields such as applied psychology 

(see, e.g., Howell Jackson et al., Analytical Methods for Lawyers (St. Paul, Mn.: Foundation Press, 

2003), pp. 27-30; Baron (2010), supra n. 10, pp. 112-113; Detlof von Winterfeldt and Ward 

Edwards, Decision Analysis and Behavioral Research (Cambridge: Cambridge University Press, 

1986), pp. 112-122).  
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In the above framework, the optimal decision 𝑑𝑜𝑝𝑡 will be the one at which 

the EMV attains its maximum, that is  

 

EMV(𝑑𝑜𝑝𝑡) = max
𝑖

EMV(𝑑𝑖). 

 

We can write the EMV associated with going to trial, for the plaintiff, as 

follows: 

 

EMV(𝑑2) = MV(𝑑2, 𝜃1) × Pr(𝜃1|𝐼) + MV(𝑑2, 𝜃2) ×  Pr(𝜃2|𝐼)                  (1) 

= (€ 150,000) × 0.8 +  (€ 0) × 0.2 =  € 120,000.  

 

Note that when deciding 𝑑1, there will be no trial, and the plaintiff accepts 

the out-of-court settlement as given by the monetary value x. It is not necessary 

at this point, to be explicit about x. It suffices to note that EMV(𝑑1) = 𝑥 and the 

plaintiff will decide 𝑑1 whenever EMV(𝑑1) > EMV(𝑑2), that is the settlement offer 

𝑥 > € 120,000. In other words, the plaintiff will decide to go to trial if the 

expected monetary output, that is the target amount of € 150,000, discounted by 

probability, is greater than the sure return x from the out-of-court settlement.  

3.2 Influence diagrams for the standard model of legal negotiations 

In a more realistic perspective, the MV introduced in Section 3.1 should account 

for the cost of litigation 𝑙 = L(𝑑𝑖, 𝜃𝑗), taken here as the cost incurred by legal 

representation. Other specific costs may be included in the analysis without loss 

of generality. Under the reasonable assumption of additivity, since costs are 

quantified in monetary terms, the monetary value MV can be taken as the net 

amount which the decision-maker will receive, one has  

 

MV(𝑑𝑖, 𝜃𝑗 , 𝑙) = MV(𝑑𝑖, 𝜃𝑗) − L(𝑑𝑖, 𝜃𝑗).                                         (2) 
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The expected monetary value of decision 𝑑1 will become  

 

   EMV(𝑑2) = MV(𝑑2, 𝜃1, 𝑙) × Pr (𝜃1|𝐼) + MV(𝑑2, 𝜃2, 𝑙) ×  Pr (𝜃2|𝐼) 

= ∑[MV(𝑑2, 𝜃𝑗) − L(𝑑2, 𝜃𝑗)]

2

𝑗=1

×  Pr(𝜃𝑗|𝐼).                             (3) 

 

In some circumstances, the cost of litigation can be assumed to be 

independent on the outcome of the trial, that is L(𝑑2, 𝜃1) = L(𝑑2, 𝜃2) = L(𝑑2). 

Under this assumption, expression (2) can be simplified as 

 

MV(𝑑𝑖, 𝜃𝑗 , 𝑙) = MV(𝑑𝑖 , 𝜃𝑗) − L(𝑑𝑖).                                        (4) 

 

Litigation costs will then combine naturally with the EMV by 

subtraction,19 that is:  

 

EMV(𝑑2) = [MV(𝑑2, 𝜃1) − L(𝑑2)] × Pr (𝜃1|𝐼) + [MV(𝑑2, 𝜃2) − L(𝑑2)] ×  Pr (𝜃2|𝐼) 

= ∑ MV(𝑑2, 𝜃𝑗)

2

𝑗=1

×  Pr(𝜃𝑗|𝐼) − L(𝑑2).                                                              (5) 

 

In the remainder of this paper, it will be assumed that litigation costs are 

independent of the outcome of the trial. It is possible, however, to avoid this 

                                                 

19  It is important to note that this is valid only under the assumption of linearity of the utility 

function. In fact, one has U(MV(𝑑𝑖 , 𝜃𝑗 , 𝑙)) = MV(𝑑𝑖 , 𝜃𝑗, 𝑙) = MV(𝑑𝑖 , 𝜃𝑗) − L(𝑑𝑖). If, however, the 

utility function is not linear, U(MV(𝑑𝑖 , 𝜃𝑗, 𝑙)) ≠ MV(𝑑𝑖 , 𝜃𝑗 , 𝑙) = MV(𝑑𝑖 , 𝜃𝑗) and the assumption of 

additivity cannot be made. 
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assumption and adapt the proposed BDNs accordingly as explained later in this 

section.  

One way to translate the current analysis into an influence diagram 

consists in reusing the structure of the BDN shown in Figure 2(i) and to change 

the definition of the nodes D and 𝜃 according to the elements of interest here, i.e. 

decisions 𝑑1 (out-of-court settlement) and 𝑑2 (pursue litigation), and states of 

nature 𝜃1 (win trial) and 𝜃2 (lose trial). Note also that the definition of the utility 

node, denoted G here, shorthand for “gain” understood in a broad sense as 

defined below, has changed. The resulting model is shown in Figure 3(i). Note 

that the node G contains the utility function expressed as before in terms of net 

monetary values: MV(𝑑2, 𝜃1, 𝑙) =  € 150,000 − € 20,000 = € 130,000, that is the 

“gain” of winning the trial minus the litigation cost, MV(𝑑2, 𝜃2, 𝑙) =  − € 20,000, 

i.e. no “gain” when losing the case and incurring the litigation cost, and MV(𝑑1) =

 € 𝑥, i.e. the offered out-of-court settlement. For the purpose of the current 

discussion, let x be € 90,000. Note also that when 𝑑1 is selected, there is no 

consideration of the variable 𝜃, the outcome of trial. The EMV of going to trial for 

the plaintiff’s perspective thus is:  

 

EMV(𝑑2) = (€ 150,000) × 0.8 + (€ 0) × 0.2 − € 20,000 = € 100,000.         (6) 

 

So, EMV(𝑑2) > EMV(𝑑1) and the plaintiff would refuse the out-of-court 

settlement in the amount of € 90,000. Note that we do not deal here with the 

psychological dimension of the decision, in particular the fact that people may be 

inclined to prefer an out-of-court settlement of € 90,000 that is certain (decision 

𝑑1) rather than opt for 𝑑2 which involves a probability of 0.2 to incur the litigation 

cost of € 20,000 only, and hence represent a net loss. This would require a 

different utility function to properly measure the undesirability of a net loss.  
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Figure 3: Bayesian decision networks for a standard model of legal negotiations. The 

squared decision node D has states 𝑑1 (accept out-of-court settlement) and 𝑑2 (pursue 

litigation at trial). The chance node 𝜃 has two states 𝜃1 (win trial) and 𝜃2 (lose trial). In 

Figure (i), the node G quantifies all monetary aspects (e.g., costs, settlements, etc.) of 

the consequences of decisions. In Figure (ii) and its expanded representation (iii), 

distinct nodes L, S and G are used to specify, respectively, litigation costs, out-of-court 

settlement amount and court-ordered settlement (verdict) in the event of winning trial. 

Node D in Figure (iii) shows the EMV of each decision whereas node 𝜃 shows the 

plaintiff’s probabilities for the various trial outcomes.  

 

Although being a compact model, Figure 3(i) may be impractical because 

the monetary values specified in the node G fuse different aspects of the problem, 

such as litigation costs and gain in case of succeeding at trial. To enhance clarity 

and exert better control over the different features, it is possible to introduce 

distinct utility nodes for each monetary factor. This is shown in the BDN in Figure 

3(ii) where the node D has child nodes L for the cost of litigation, and S for the 

out-of-court settlement offer. In this model, the table of the node L specifies 

− € 20,000  in the event of deciding 𝑑2 (pursuing the damage suit at trial). A 

value of € 0 is specified in the event of 𝑑1, not going to trial, because it is assumed 

that this decision will incur no further litigation costs. A value different from 0 

may be chosen, however, to account for costs of option  𝑑1 other than legal fees, 

if required. Specifying the BDN in this way using, for example, a Bayesian 

D q

GL

SD q

G

(i) (ii)

d1: out-of-court 

settlement € 90,000
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network software such as HUGIN,20 leads to model output shown in expanded 

version in Figure 3(iii).21 The decision node displays the EMV of the options 𝑑1 

and 𝑑2, and the chance node 𝜃 shows the plaintiff’s probabilities for the trial 

outcomes 𝜃1 and 𝜃2. It may be argued that none of these results are original, 

because they may also be obtained using paper and pencil. It is relevant, 

however, to pursue the development of these models stepwise, starting with 

simple formats, in order to lay bare their constructional logic and demonstrate 

that their output can be trusted. This represents an important preliminary step to 

more advanced network structures for which the underlying calculations, 

without computational support, become increasingly complex. The next section 

illustrates the ease with which further features can be added.  

3.3 Uncertainty about verdicts and litigation costs 

A restriction of the models introduced so far is that factors such as the amount in 

case of winning at trial (e.g., node G, Figure 3) and litigation costs are considered 

fixed or known monetary values. However, at the time of making a decision, the 

plaintiff may be uncertain about the length of the process and the court-ordered 

settlement (i.e., the amount granted in case of a verdict favourable to the 

plaintiff). We now point out how BDNs can readily handle such additional 

sources of uncertainty.  

Start by considering uncertainty about the litigation costs. These may 

crucially depend, for example, on process length and case complexity. For the 

purpose of illustration, suppose that the plaintiff considers that – given 

consideration of the case as a whole – it is more probable than not that litigation 

costs will be twice as high, that is € 40,000, rather than € 20,000 as in the previous 

                                                 

20  https://www.hugin.com; Kjærulff and Madsen, supra n. 7. 
21  Note that Figure 3 contains schematic illustrations, not screenshots of BDN software.  
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section. How does this affect the EMV of the decision 𝑑2 of going to trial? Let us 

assume that the plaintiff wishes to consider two different cases, i.e. litigation costs 

of € 20,000 with probability 0.4, and € 40,000 with probability 0.6. The reader 

may consider other amounts and associated probabilities. The expected cost of 

litigation thus is: (€ 20,000) × 0.4 + (€ 40,000) × 0.6 = € 32,000. Using this 

result in Equation (5), the EMV of going to trial for the plaintiff’s perspective thus 

becomes:  

 

EMV(𝑑2) = (€ 150,000) × 0.8 + (€ 0) × 0.2 − (€ 32,000) = € 88,000.         (7) 

 

Since the expected cost has increased by € 12,000, the EMV of decision 𝑑2 

has decreased by the same amount. In particular, note that now EMV(𝑑2) <

 EMV(𝑑1) so that the out-of-court settlement € 90,000 becomes more 

advantageous – it becomes the optimal decision – for the plaintiff, although the 

plaintiff may consider this difference to be rather small. The proposed BDN can 

be further developed to acknowledge for more realistic settlements where the 

cost of litigation is a function of the process length. For example, one may 

consider the litigation cost to be proportional to the fee per hour of a lawyer, by 

adding a node to acknowledge for the expected length of the trial.  

Next, consider uncertainty about the amount granted in case of a verdict 

favourable to the plaintiff. Assume, for example, that the party considers three 

possible amounts granted or court verdicts, € 100,000, € 150,000 and € 200,000, 

with associated probabilities 0.3, 0.6 and 0.1. Thus, the fixed MV(𝑑2, 𝜃1) in 

Equation (5) must be replaced by the expected monetary value, that is the sum of 

the three outcomes weighted by their probability, that is (€ 100,000) × 0.3 +

(€ 150,000) × 0.6 + (€ 200,000) × 0.1 = € 140,000. Inserting this result in 

Equation (5) gives:  
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EMV(𝑑2) = (€ 140,000) × 0.8 + (€ 0) × 0.2 − (€ 32,000) = € 80,000.         (8) 

 

Thus, uncertainty about the amount of the court-ordered settlement has 

led to a further decrease of the EMV, in addition to that incurred by uncertainty 

about legal fees, so that there is now a more clear-cut difference with respect to 

the EMV of 𝑑1, which is given by the out-of-court settlement amount of € 90,000.  

To track the above results in a BDN, consider an extension of the model in 

Figure 3(ii), shown here in Figure 4. This network contains an additional node L′ 

with two states 40,000 and 60,000 to which unconditional probabilities 0.4 and 

0.6 are assigned. This node models the different litigation costs and the plaintiff’s 

probabilities for these costs in case decision 𝑑2 is made. Adding node L′ as a 

parent for L requires a modification of the node table of L so that it will copy the 

negative value22 of the current state of L′ when the condition 𝐷 = 𝑑2 holds, and 

the value 0 otherwise. Software environments such as Hugin offer a rich syntax 

(e.g., if-then expressions) to define functions in this way. Similarly, there is an 

additional node G′, acting as a parent node for G. The states of G′ correspond to 

the different court-ordered settlements, whereas the associated node probability 

table contains the plaintiff’s probabilities for those outcomes in the event decision 

𝑑2 is made. The node table of G is defined23 such that it copies the current value 

of G′ in the case where both 𝐷 = 𝑑2 and 𝜃1 holds, and the value 0 otherwise.  

 

 

                                                 

22  A negative value is specified here because in Hugin utility nodes are considered as additive 

contributions to the utility function.  
23  In Hugin syntax, an expression such as if(and(D=="d2",theta=="win"),Gprime,0) may be used, 

where D, theta and Gprime correspond to the internal names of the nodes D, 𝜃 and G′.  
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Figure 4: Extended BDNs for a standard model of legal negotiations. The nodes D, 𝜃, 

S, L and G are defined as in Figure 3. Nodes L′ and G′ are extensions to deal with 

uncertainty about, respectively, litigation costs and the trial verdict.  

 

Figure 4(ii) shows a schematic illustration of the compiled network. The 

node G′ is fixed (i.e., instantiated) to the state € 150,000, highlighted with a bold 

border line. This corresponds to a situation in which there is no uncertainty about 

the court-ordered verdict. In turn, the node L′ is left uninstantiated so as to allow 

for uncertainty about the litigation costs. For such a situation, the node D shows 

that the EMV of decision 𝑑2 is € 88,000, which corresponds to the value found 

through Equation (7). The network shown in Figure 4(iii) shows a situation that 

allows for uncertainty about the court-ordered settlement, which is achieved by 

leaving the node G′ uninstantiated. The EMV of decision 𝑑2 then is € 80,000, 

which corresponds to the result given by Equation (8).  

3.4 The notion of perfect information (PI) 

The previous sections have illustrated that the major factor rendering decision-

making hard is uncertainty about the state of nature 𝜃, for if we knew whether 

𝜃1 (win) or 𝜃2 (lose) holds, choosing between 𝑑1 and 𝑑2 is more straightforward. 

In the special case where other factors (e.g., litigation costs) could be considered 

fixed (i.e., without uncertainty), it would even be possible to tell which decision 

would offer the most desirable outcome within the stated modelling 

assumptions. Therefore, any information capable of reducing uncertainties about 

the states of nature, that is directing associated probabilities towards 0 and 1, is 

of particular interest to decision-makers. One notion that is often encountered in 
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this context is perfect information (PI). This represents an element that is 

completely informative about the propositions of interest (i.e., information that 

would allow one to know which proposition is true). A crucial question is, 

however, how valuable such data or information is. This question is pursued 

below. Although it may be considered a hypothetical question, it is useful as a 

starting point for thinking about the more general issue of data that are only 

partially informative (i.e., imperfect). Such data do not allow us to establish with 

complete certainty which state of nature actually holds, a property that typically 

applies to forensic science results.  

Perfect information can lead to two different outcomes. In one case, perfect 

information would establish 𝜃1, i.e. winning the case. The best decision then is 

𝑑2, pursuing the dispute, because the outcome will be a verdict of € 150,000, 

from which the litigation costs of € 20,000 must be subtracted. The second 

possibility is that perfect information establishes 𝜃2, in which case decision 𝑑2 

would incur the litigation costs of € 20,000, and no “gain”, whereas 𝑑1 would 

lead to the out-of-court settlement of € 90,000 (a situation in which no litigation 

cost is assumed). But again, the states of nature are unknown, so at best one can 

consider one’s expected outcome (monetary value) with perfect information 

(EMVPI), defined as follows:  

 

EMVPI = ∑[max
𝑖

(MV(𝑑𝑖, 𝜃𝑗) − L(𝑑𝑖))]

2

𝑗=1

× Pr(𝜃𝑗|𝐼).                               (9)      

 

In the example considered here, this results in (€ 90,000 − € 20,000) ×

0.8 + (€ 90,000) × 0.2 = € 122,000. Stated otherwise, the expected outcome with 

perfect information is obtained by summing over the possible states of nature (or 

outcomes) the maximum net monetary value – that is the monetary outcome 
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associated with the optimal decision – weighted by the probability of the state of 

nature.24  

The EMVPI can be compared to the EMV of the optimal decision without 

perfect information. For a case in which the verdict is taken to be constant at 

€ 150,000, and the litigation cost fixed to € 20,000, the decision 𝑑2 was found to 

be optimal, with an EMV of € 100,000, found through Equation (6) and also 

shown in Figure 3(iii). The result of this comparison is the expected value of perfect 

information (EVPI), that is € 22,000. It is often referred to as the maximum price 

that one should be willing to pay for obtaining such perfect information. More 

formally, it is defined as follows:  

 

EVPI = EMVPI−EMV(𝑑𝑜𝑝𝑡).                                                   (10) 

 

where dopt is the optimal decision without additional information, also 

sometimes called the a priori optimal action.  

The EVPI does not correspond to a particular state of a BDN, and hence 

cannot directly be read off the graph.25 Rather, Equation (10) shows that the EVPI 

is the result of a comparison of different situations, and those can be displayed 

separately. As is illustrated by Figure 5, for example, one can determine the 

optimal decisions and their associated EMVs under assumptions of perfect 

information, which is needed to calculate the EMVPI, as part of the EVPI. The 

added value of BDNs thus is to provide a unified environment in which one can 

break down abstract formulae, such as Equation (9), into their constituting 

                                                 

24  Note that the procedure is general and also holds for n hypotheses.  
25 Note, however, that some graphical probability software packages (e.g., Hugin) offer built-in 

functions to perform value of information analyses.  
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components, which may otherwise be more difficult to achieve, and more prone 

to error.  

 

 

Figure 5: Extended BDNs for a standard model of legal negotiations. The nodes D, 𝜃, 

S, L and G are defined as in Figure 3. Nodes L′ and G′ are extensions to deal with 

uncertainty about, respectively, litigation costs and the verdict, fixed here to € 20,000 

and € 150,000, respectively. Figure (i) shows a situation in which it is supposed that 

perfect information about the state of nature is available, in particular that 𝜃1 holds 

(node shown with grey shading). The optimal decision in this case is 𝑑2, leading to a 

MV of € 130,000. In Figure (ii), the state 𝜃2 is supposed to hold. In this case the optimal 

decision is  𝑑1 with outcome € 90,000. All instantiated nodes are highlighted with a 

bold border line.  

3.5 Expected value of partial information (pI) 

In legal practice, it is often the case that a party has the option of seeking further 

evidence that may have a bearing on the assessment of probabilities for trial 

outcomes. Typically, information that may be gathered in real cases is not such 

as to establish clear-cut values of 0 and 1 for the probabilities of the states of 

nature as is supposed by perfect information (Section 3.4). Let us denote such 

evidence partial information (pI).26 To assess the expected value of less than perfect 

information, one needs to consider the effect that partial information has on one’s 

probabilities for the relevant states of nature 𝜃. Given the probabilistic graphical 

                                                 

26  Here, the lower-case letter “p” denotes “partial” as compared to the capital letter “P” used to 

denote “perfect” in Section 3.4.  
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modelling framework used in this paper, this operation is naturally operated 

through Bayes’ theorem.27 The procedure is outlined below. A forensic example 

is given in Section 3.6.  

Consider first that the optimal decision 𝑑 with partial information E, say 

𝑑𝑜𝑝𝑡|𝐸, is the one that maximises the EMV calculated on the basis of the posterior 

probabilities for the trial outcomes 𝜃 once the partial information E is available, 

say Pr(𝜃|𝐸). Formally, thus, 𝑑𝑜𝑝𝑡|𝐸  is the decision at which the EMV attains its 

maximum:  

 

EMV(𝑑𝑜𝑝𝑡|𝐸) = max
𝑖

EMV(𝑑𝑖|𝐸)                                                                              (11) 

= max
𝑖

∑[MV(𝑑𝑖, 𝜃𝑗) − L(𝑑𝑖)] × Pr(𝜃𝑗|𝐸)

2

𝑗=1

. 

 

For shortness of notation only, we leave aside relevant information I from 

notation and assume that there are fixed monetary values for the trial verdict in 

case of winning, that is MV(𝑑2, 𝜃1), and the litigation costs L(𝑑2). Also, the out-

of-court settlement has a fixed value MV(𝑑1), which is independent of 𝜃, with no 

associated litigation cost.  

Equation (11) provides the guide to action in case the decision-maker 

knows what kind of information E has been obtained, and hence posterior 

probabilities Pr(𝜃𝑗|𝐸) are available. However, information E may take various 

different forms (i.e., 𝐸𝑘, for k=1,2,...,n), so that prior to obtaining E the decision-

maker should take into account these possible outcomes 𝐸𝑘, along with an 

                                                 

27  For the purpose of this paper, it is not necessary to go into the technical details of operating 

Bayes’ theorem because this is a feature incorporated by default in Bayesian (decision) 

networks (e.g., Uffe Kjærulff and Anders Madsen (2008), supra n. 7). 



(2020) 17:1 SCRIPTed 83  110 

expression of the associated uncertainty, in terms of probabilities. This leads to 

the expected monetary value with partial information (EMVpI):  

 

EMVpI = ∑ max
𝑖

EMV(𝑑𝑖|𝐸) × Pr(𝐸)                                             (12)

𝐸

 

 

Equation (12) involves the multiplication of results in (11) by Pr(𝐸) over 

the various possible forms that the information E can take.28 The difference 

between this result and the EMV without information E is the expected value of 

partial information (EVpI):  

 

EVpI = EMVpI − max
𝑖

EMV(𝑑𝑖),                                                 (13) 

 

where max
𝑖

EMV(𝑑𝑖) is EMV(𝑑𝑜𝑝𝑡), prior to the partial information E.  

3.6 Example: EMV of partial forensic information 

To illustrate the consideration of partial information with a forensic connotation, 

suppose that E refers to the report of a forensic document examiner. Forensic 

document examinations focus on a variety of aspects, such as physical document 

examinations or comparative handwriting examinations. The results of such 

examinations may help inform about document authenticity, for example, which 

may be a key issue in a litigation case. Assume that the conclusion of the report 

of the forensic scientists takes one of the following three different forms: findings 

(i.e., evidence) favourable to the plaintiff (𝐸1), neutral findings (i.e., favouring 

                                                 

28  Note that the sum in Equation (12) may be replaced by an integral to deal with continuous 

evidence. In this latter case, the probability of the evidence will be replaced by a probability 

density.  
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neither party; 𝐸2), and findings favourable to the defendant (𝐸3). Note that this is 

a general way of looking at the forensic scientist’s work, comparable to that of 

other specialists and consultants that may be contacted as part of the legal 

process.  

What exactly forensic and other specialists are consulted for is a crucial 

point that is worthy to be defined in more detail. In particular, we emphasize that 

the issue here is not the use of results of forensic examinations to help inform 

about intermediate propositions such as “the questioned document was signed 

by the defendant” versus “an unknown person signed the questioned 

document”, or “the questioned document was printed with the defendant’s 

device” versus “an unknown printer was used”. Such propositions are used in 

conventional evaluations of forensic results.29 Here a different uncertain 

proposition is of interest: it is the outcome of the lawsuit, denoted 𝜃, which is the 

uncertain event bearing on the decision analysis.30  

The decision analyst thus is directed to think about how the forensic report 

E informs the party about θ, the verdict at the end of the trial. Let us emphasise 

again that the question here is not one of weight of evidence for results of forensic 

examinations, a notion concerned with propositions representing competing 

versions of an event of interest. The focus here is the impact on verdicts, i.e. how 

a given forensic conclusion will impact, as judged by the litigant, the relative 

probabilities of the two possible ultimate trial outcomes. In a formal framework, 

                                                 

29  Colin Aitken and Franco Taroni, Statistics and the Evaluation of Evidence for Forensic Scientists, 

2nd ed. (Chichester: John Wiley & Sons, 2004); Franco Taroni et al., Data Analysis in Forensic 

Science: a Bayesian Decision Perspective (Chichester: John Wiley & Sons, 2010); see also supra n. 

12. 
30  It is worth noting, though, that some propositions of interest when evaluating forensic results 

(e.g., “the questioned signature is authentic”) are closely related to ultimate propositions (e.g., 

liability).  
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a logical way to track this question is through Bayes’ theorem. With the prior 

probabilities Pr(𝜃), obtaining the posterior probabilities Pr(𝜃|𝐸) requires the 

consideration of the probabilities for E given 𝜃, Pr(𝐸|𝜃). Suppose the following 

values: Pr(𝐸𝑖|𝜃1) = {0.9,0.05,0.05} and Pr(𝐸𝑖|𝜃2) = {0.1,0.05,0.85}, for i = 1, 2, 3. 

These assignments express the view that a forensic finding favourable to the 

plaintiff (𝐸1) is more probable if the case in fact turns out favourably for the plain- 

tiff (𝜃1), rather than unfavourably (𝜃2). The assignment also conveys the view that 

a result unfavourable for the plaintiff (𝐸3) is more probable if the case in fact turns 

out unfavourably for the plaintiff (𝜃2), rather than favourably. It is also 

considered that a “neutral” forensic result (𝐸2) is obtained with the same 

probability under each state of nature 𝜃. Note that these probabilities are also 

sometimes interpreted as a consideration of an expert’s reliability. This is 

comparable to other contexts where, for example, expert evidence is used to 

inform about states of nature such as the presence or absence of oil or gas on a 

potential mining site, or the commercial success of a new product introduced on 

the market.  

Clearly, finding the EVpI through Equation (13) with the above 

assignments is a tedious task. However, we can illustrate the support provided 

by computationally implemented Bayesian decision networks. They can either 

break down the computation into smaller chunks or even provide the result in a 

single step. The latter may be preferable if efficiency is required, whereas the 

former may be of interest if intermediate results (e.g., the optimal decision and 

associated EMV for a given result E) need to be inspected. This may be valuable 

when consulting with a client because it will allow the analyst to work through 

the decision network together with the client to demonstrate how the optimal 

decision may change in different circumstances, and that the analyst has 

seriously assessed each aspect of the client’s case. Below, we briefly outline both 

routes.  
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Start by considering the computation of parts of the EVpI using the BDN 

shown in Figure 6(i). It contains an additional chance node for the possible 

forensic findings E, specified as a child node of 𝜃 (trial outcome). The conditional 

probabilities Pr(𝐸|𝜃) are as assigned above. Figure 6(i) shows the BDN in its 

initial state, with nodes G′ and L′ fixed to, respectively,  € 20K and € 150K. The 

node E shows the marginal probabilities for the various forms that the forensic 

report may take. These values are one element needed for the EMVpI (Equation 

(12). Further elements are posterior probabilities for 𝜃 and the EMV of the 

optimal decision given a particular posterior probability distribution over 𝜃.31 

This is illustrated in Figure 6(ii) for the situation in which the outcome 𝐸1, a 

favourable forensic report (for the plaintiff’s position), is obtained: it is shown 

that the posterior probability Pr(𝜃1|𝐸1) increases to 0.973 and the optimal 

decision is 𝑑2, with an EMV of € 125,946. One can proceed analogously for the 

potential outcomes 𝐸2 (neutral forensic report) and 𝐸3 (unfavourable forensic 

report). Applying the results in Equation (12) leads to the EMVpI of € 117,100. 

Comparing this result with the EMV € 100K of the optimal decision without 

partial information, shown in Figure 6(i), gives the EVpI of € 17,100. For a 

summary of the computation of the EMVpI, see also Table 1. Note that this listing 

of the various outcomes and the optimal decisions in each of these cases is also 

sometimes referred to as a policy.  

 

 

 

                                                 

31  Again, these probabilities are obtained through Bayes’ theorem (see also supra n. 27). 
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Figure 6: Bayesian decision network previously defined in Figure 4, extended here 

with a child node for 𝜃, representing the scope of results E given by a forensic 

scientist’s report. Figure (i) shows the initial state of the network with litigation costs 

fixed at € 20K and the verdict fixed at € 150K. Figure (ii) shows a situation in which a 

forensic report favourable to the defendant is obtained. This is highlighted with a grey 

shaded node, instantiated to 𝐸1. The forensic information 𝐸1 leads to posterior 

probabilities for the trial outcomes 𝜃 and an EMV of € 125,946 for the optimal decision 

𝑑2.  

  

Forensic result E Pr (𝜃1|𝐸𝑖) 𝑑𝑜𝑝𝑡|𝐸 EMV(𝑑𝑜𝑝𝑡|𝐸) EMV(𝑑𝑜𝑝𝑡|𝐸) × Pr(𝐸) 

𝐸1(favourable) {0.973,0.027} 𝑑2 € 125,946 € 93,200 

𝐸2(neutral) {0.8,0.2} 𝑑2 € 100,000 € 5,000 

𝐸3(unfavourable) {0.19,0.81} 𝑑1 € 90,000 € 18,900 

Total: € 117,100 
 

Table 1: Illustration of the computation of the EMVpI. For each forensic result 𝐸𝑖, 

i={1,2,3}, the columns two to five contain, respectively, the posterior probabilities 

{Pr (𝜃1|𝐸𝑖), Pr (𝜃2|𝐸𝑖)}, the a posteriori optimal decision (𝑑𝑜𝑝𝑡), their associated EMV, 

and the EMV discounted by the marginal probability of the finding 𝐸𝑖. The total value 

in column five gives the EMVpI (Equation (12)).  

 

The direct computational step to obtain the EVpI for the forensic report E 

is shown in Figure 7, using the “Value of information” functionality of the 

software Hugin. The EVpI can be retrieved in an information pane while keeping 
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track of other key values shown in monitor windows besides nodes in the 

network (e.g., EMV of the a priori optimal action, here 𝑑2, which is € 100K).  

 

 

Figure 7: Illustration of a computerized implementation of the Bayesian decision 

network as defined and instantiated in Figure 6(i) (i.e., litigation costs fixed at € 20K 

and the verdict settlement fixed at € 150K), using the software Hugin Researcher (vers. 

8.6). The information pane shows the result of a value of information analysis for the 

decision variable representing the plaintiff’s decision of bringing or not the damage 

suit to trial. The result of the analysis, € 117,100, is the EVpI, the expected value of 

partial information. Here, partial information refers to the forensic report. It 

corresponds to the result obtained in Section 3.6, and is given by the difference 

between the EMVpI (that can be found in, or that has been reconstructed step by step 

in Table 1) and the EMV of the a priori optimal action (here, € 100K, shown also in the 

monitor window of the decision node “Go to trial?”).  

3.7 Sequential decision-making and normative decision policies 

So far we have considered a formal way of thinking about the value of a single 

item of information in the context of making an important decision, illustrated 

through the example of a hypothetical litigation case. This analysis can be taken 

a step further and be reflected on from the perspective of sequential decision-

making. In the currently discussed example, the decision about whether or not 

to obtain forensic information is made before making a decision about bringing 
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the damage suit to trial. Thus, there is a sequence of decisions. In terms of a 

Bayesian decision network, the decision about obtaining or not forensic 

information can be represented by adding an additional decision node, denoted 

F here, as a parent for the node E. The values of the node F are “acquire forensic 

information (𝑓1)” and “do not acquire forensic information (𝑓2)”. The node F has 

a utility node K as a child, in order to account for the cost of the forensic 

information. The chance node K′ deals with uncertainty about these costs as done 

previously for the nodes G′ and L′. Figure 8 summarises the network. Note that 

there are additional edges with dotted lines. One edge is a precedence link and 

goes from the decision node F to the decision node D. This indicates the temporal 

order that decision F precedes decision D. Another edge, an information link, 

goes from E to D. This dotted edge indicates that the state of the variable E is 

known before the ultimate decision D is made. These semantic aspects are also 

known as the no-forgetting assumption: the decision-maker perfectly recalls all 

“experiments” and decisions made in the past.  

 

 

 

Figure 8: Bayesian decision network previously defined in Figures 4 and 6, extended 

here by a decision node F with states “acquire forensic information” (denoted 𝑓1 in the 

main body of the text) and “do not acquire forensic information” (denoted 𝑓2). The 

utility node K models the cost of acquiring forensic information, whereas the node K′ 

models different costs in the same way as is done by the nodes G′ and L′.  
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The definition of the node E has slightly been changed, by adding a further 

state called “no result”. It accounts for the situation in which the node F takes the 

value “do not acquire forensic information (𝑓2)”. The definition of the conditional 

probability table for the node E from Section 3.6 is modified to Pr(𝐸𝑖|𝜃1, 𝐹 = 𝑓1) =

{0.9,0.05,0.05,0} and Pr(𝐸𝑖|𝜃2, 𝐹 = 𝑓1) = {0.1,0.05,0.85,0}, for i = 1,2,3,4. In case of 

𝐹 = 𝑓2, not acquiring forensic information, we specify Pr(𝐸𝑖|𝐹 = 𝑓2) = {0,0,0,1}, 

regardless of the state of the node 𝜃.  

Implementing the Bayesian decision network shown in Figure 8 in a 

graphical modelling software, such as Hugin, allows one to conduct a variety of 

analyses. A first important question is: “Should forensic information be 

acquired?”. To answer this question, we need the EMV(𝑓1). In Hugin, this value 

can be obtained by using the iterative algorithm called “Single Policy Update”. 

As shown in Figure 9 (top), the value obtained is 117,000, which corresponds to 

the EMVpI found at the end of Section 3.6 (see also Table 1). This value is greater 

than the EMV 100,000 for not conducting forensic analyses (not shown in Figure 

9). Note that the cost for the forensic analyses has been set to zero here in order 

to allow for a direct comparison of the output with the results obtained in Section 

3.6.  

Following the decision to acquire forensic analyses (decision node F), the 

next question will be whether or not to bring the case to trial (decision D). This 

second decision is considered here to depend on the outcome of the forensic 

report. To help with this question, consider again Figure 9 (top). The monitor 

window of the node E (“Forensic report”) shows the probabilities for obtaining 

the various reports outcomes 𝐸𝑖, for i = 1, ..., 4, as well as the EMV of the optimal 

terminal decision at the node D (“Go to trial?”). As may be seen, these values 

correspond to the EMV(𝑑𝑜𝑝𝑡) obtained in column 4 of Table 1. Note, however, 

that the optimal decisions 𝑑𝑜𝑝𝑡 vary: for a favourable (𝐸1) and a neutral (𝐸2) 

report, the optimal decision is 𝑑2 (go to trial); for an unfavourable report (𝐸3), the 
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optimal decision is 𝑑1, accepting the out-of-court settlement offer. The EMV of 

the latter decision can readily recognised to be 90,000, as defined in Section 3.2. 

The optimal decisions for the node D (“Go to trial?”) given each outcome 𝐸𝑖 are 

summarised in a so- called policy table, as shown at the bottom of Figure 9 (top). 

This table contains the value 1 for the optimal decision, and 0 otherwise. Figure 

9 (bottom) illustrates the state of the network after obtaining a favourable forensic 

report and communicating this information to the network. The optimal decision 

in such a situation is to bring the case to trial, decision 𝑑2, with EMV 125,946.  

A particular feature of the semantics of the Bayesian decision network 

considered here is the notion of “decision past”. A decision node in a Bayesian 

decision network has a decision past that includes the parents of the decision 

node of interest, as well as the previous decisions in the decision sequence with 

their parents. A policy for a decision node in a Bayesian decision network 

specifies a decision for any possible configuration of the decision past of the 

decision node of interest. Here, a configuration means a possible combination of 

decisions and observations made prior to making the decision of interest. In 

Table 2 we specify different decision pasts for the node D (“Go to trial?”), and 

associated policies. We refer to them as normative decision policies.  
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Figure 9: Bayesian decision network defined in Figure 8, implemented in the software 

Hugin: state of the network after a single policy update and the display of a policy 

table for the decision node “Go to trial?” (top); state of the network after instantiating 

the node F (“Do forensic analyses?”) to “𝑓1: acquire forensic information” and node E 

(“Forensic report”) to “𝐸1: favourable report”, respectively (bottom).  
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Do forensic 

analyses? Forensic report EMV(𝑑1|𝐸𝑖) EMV(𝑑2|𝐸𝑖) 

Optimal 

decision 

yes 𝐸1: favourable 90,000 125,946 𝑑2: go to trial 

yes 𝐸2: neutral 90,000 100,000 𝑑2: go to trial 

yes 𝐸3: unfavourable 90,000 8,571 𝑑1: settle 

no 𝐸4: no result 90,000 100,000 𝑑2: go to trial 
 

Table 2: Normative decision policy table for the node D (“Go to trial?”, column 5) and 

different decision pasts, defined by the previous decision, node F (“Do forensic 

analyses?”, column 1), and the outcome E (“Forensic report”, column 2). Maximum 

expected monetary values are shown in bold. Each row in the table represents a policy.  

4 Discussion and conclusions 

Traditionally, scholarly literature on how to manage information in the legal 

process has largely gravitated around questions of probative value of the 

evidence in the case at hand. In particular, it has focused on whether and to what 

extent evidence has discriminative capacity with respect to the competing 

propositions presented by the parties at trial, and how evidence impacts the 

ultimate issue on which factfinders need to render a decision. However, this 

emphasis on the fact-finders’ perspective is only a small part of the broad scope 

of weight-of-evidence and decision-making issues that the various participants 

in the legal process encounter. For example, litigants may need to decide whether 

or not to go to trial, and whether or not to look for additional information before 

taking further legal action. Most often, such questions are thought about and 

formulated in a verbal and qualitative way; this is often felt to be insufficient 

because of the high stakes involved, which can be quantified to at least some 

extent (e.g., in monetary terms). Costs for legal representation and ongoing 

enquiries raise questions such as “how much should we be willing to pay for 

additional information?” or “what is the (expected) value of additional 
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information?”. The legal context in which such questions are raised being highly 

complex, and information coming in natural language, formal approaches to 

analysing case-tailored legal strategies are a pending challenge, as demonstrated 

by the numerous directions that research has taken around the notions of 

artificial intelligence and legal analytics.32  

The formal modelling approach presented in this paper aims to cope with 

the above challenges, though it is important to be clear about a few key 

characteristics of our analyses.  

• First and foremost, the computational models we describe are not 

autonomous systems. Any decision-analytic model needs to be built for 

the specific needs of the case at hand, and requires choices to be made by 

the decision analyst on (i) which variables to include in the analysis (e.g., 

litigation costs), (ii) the general level of detail at which the decision 

problem is to be approached (e.g., which uncertainty factors ought to be 

included) and (iii) assessments of probabilities and utilities. Though 

generic template structures may be given (e.g., the standard model for 

legal negotiations, Section 3.1), they need to be adapted to the particular 

needs of the case of application. Thus, the normative decision structures 

discussed in this paper are not attempts at replacing decision analysts, but 

are intended to support analysts in their probabilistic thinking and 

decision making, using formal theories, at a level of sophistication that 

may become unfeasible or discouraging without computational support.  

• The graphical modelling language and its possibilities for computational 

implementations are both rigorous and liberal concepts: they are rigorous 

                                                 

32  E.g., Kevin Ashley, Artificial Intelligence and Legal Analytics, New Tools for Law Practice in the 

Digital Age (Cambridge: Cambridge University, 2017).  
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in the sense that they capture relevance relationships among fundamental 

elements of decision problems in a logically sound way (i.e., in agreement 

with principles of probability and decision theory), and they are liberal in 

that they can cope with various levels of detail at which the analyst is 

willing to operate.  

• The proposed decision analytic structures are normative in that they assert 

coherence, i.e. conformity with probability and decision-theoretic 

principles. They are not generally normative, but only with respect to the 

elements specifically taken into account in the given case and at the level 

of detail chosen by the analyst. Although the elements included in an 

analysis are supposed to be those deemed most crucial, we do not consider 

the normative answers to be prescriptive because litigants may 

deliberately choose actions that are not considered optimal in the sense 

understood in the normative analysis. For example, litigants may seek to 

engage in legal action despite the fact that the monetary prospects of their 

decisions are not optimal, because it helps them attain other objectives, 

such as damaging their opponent’s reputation. The role of normative 

analyses is to provide a point of comparison against which decision-

makers can compare their reasoning, prior to actually making a decision, 

so as to gain a better awareness as to what exactly their choices entail, and 

compare their (intuitive) choices to the results of formal decision-theoretic 

analyses.  

Criticism is recurrently raised against formal modelling approaches in legal 

analytics. One critique is levelled at the concept of probability as used in this 

paper, for example, when assessing a party’s considerations of how a verdict will 

turn out. Practitioners may dislike the particular numerical form in which the 

proposed models employ probability, though fundamentally the notion of 
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probability cannot be dissociated from litigants’ case analyses: their 

considerations necessarily imply an assessment of the prospect of winning a 

given case.33 However, there are potential solutions to this problem, as is 

illustrated, for example, by research efforts into models of “forecasting” (or, 

“predicting”) legal outcomes.34 These may assist in providing probabilistic 

assessments for input values of the decision-theoretic models developed in this 

paper. Note, however, that such research currently focuses on selected court 

levels (e.g., U.S. Supreme Court) and requires considerable past data. In any 

event, an assessment – probabilistic or otherwise – of particular court outcomes 

is not the end of the matter: once a given assessment for legal outcomes in the 

case at hand is obtained, the practitioner still has to choose a course of action. 

This question, as we have argued throughout this paper, requires consideration 

of the various decision consequences and their relative merit from the litigant’s 

personal point of view. The decision-theoretic modelling approach presented 

here have several advantages to capture such thinking. For example, clients may 

want to obtain from their attorney an assessment that is based on more than just 

an attorney’s reference to past experience or performance. Using a formal model, 

attorneys (possibly assisted by decision-analysts familiar with the technicalities 

of the method) can demonstrate that they have seriously considered the key 

aspects of a case when suggesting a given course of action. Computationally 

implemented decision-theoretic models also provide visual support to help 

clarify the expected outcomes of different litigation strategies. This can be of 

                                                 

33  For arguments in favour of efforts to elicit numerical probabilities in litigation analysis see, 

e.g., Marc Victor, “The Proper Use of Decision Analysis to Assist Litigation Strategy” (1985) 

40 The Business Lawyer 617–629. 
34  For a recent example and overview see, e.g., Daniel Katz, Michael Bommarito and Josh 

Blackman, “A General Approach for Predicting the Behavior of the Supreme Court of the 

United States” (2017) 12(4) PLOS ONE 1-18. 
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interest to legal practitioners who seek to ensure that their clients are an integral 

part of the process of litigation strategy development.  

But still, the quantitative assessment of the relative (un-)desirability of 

decision consequences and the partial nature of decision-theoretic models with 

respect to the broad complexity of practical decision problems also invite 

criticism, with regards to practicality. While this is a valid argument, the same 

problems are even more acute when these challenges are dealt with in an 

intuitive and formally unaided way. Thus, the computational model structures 

discussed in this paper contribute to the variety of approaches available to legal 

practitioners who must constantly assess how they can improve the quality of 

advice provided to their clients, which is also a critical topic for current legal 

educational curricula.35  
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